

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme **B.Sc Chemistry** Course Title **BASIC INORGANIC AND NANO CHEMISTRY** Type of Course MINOR Semester Ι 100-199 Academic Level **Course Details Total Hours** Credit Lecture Tutorial Practical per week per week per week 4 75 3 _ 2 Concept of atom and molecule **Pre-requisites** Constituents of the atom, Rutherford's model of the atom. Periodic table and classification of elements to different blocks, Basic knowledge of qualitative and quantitative analysis Titration and use of indicators **Course Summary** This course is intended to provide basic knowledge in inorganic chemistry and nanochemistry. The student gets an understanding of the Bohr model of the atom and the modern quantum mechanical model of the atom through the first module of this course. Different types of chemical bonding are also included in the first module. General properties of the atom and the variation of these properties in the periodic table are also discussed in this course. Basic principles of analytical chemistry are included in the third module of this course which includes acidbase titration, redox titration, complexometric titration, and mixture analysis. This course also tries to explore the basic principles and importance of nanochemistry. To master the laboratory skills acid-base titration, and redox titration experiments are incorporated into this course structure.

Course Outcomes (CO):

CO	CO Statement	Cognitiv	Knowledge	Evaluation
		e Level*	Category#	Tools used
CO1	To Understand the structure of atoms			Instructor-
	and rules regarding the arrangement	U	С	created exams
	of electrons in an atom.			/ Quiz
				/Assignment
CO2	To discuss the chemical bonding,			Instructor-
	theories of chemical bonding and	U	F	created exams
	predict molecular shapes using			/ Quiz
	VSEPR theory			/Assignment

CO3	To Comprehend periodic properties,			Instructor-				
	understand laws and the concept of	U	F	created exams				
	the modern periodic table, and its			/ Quiz				
	implications			/Assignment				
CO4	To Master the principle of volumetric			Instructor-				
	analysis, understand the separation	U	С	created exams				
	of cations in qualitative analysis			/ Quiz				
				/Assignment				
CO5	To understand the basics of Nano			Instructor-				
	chemistry & to describe the synthesis	U	F	created exams				
	of nanomaterials, carbon nanotubes,			/ Quiz				
	and their applications,			/Assignment				
CO6	To Perform different titrations and			Lab work				
	execute open-ended experiments	Ap	Р					
	safely and effectively							
* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)								
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)								
Metac	Metacognitive Knowledge (M)							

Detailed Syllabus:

Module	Unit	Content	Hrs	Mark
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations, Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	2		
т	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle – Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	2		
	7	Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP ² (ethylene), SP ³ (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)	2	

	8	Molecular Orbital theory: LCAO – Electronic		
		configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation	2	
		of bond order and its applications.(Bond length and		
		bond strength), Comparison of VB and MO theories		
		Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves,		
		X-ray studies of Henry Mosley, Moseley's periodic law	2	
		- Modern periodic law – Long form periodic table.		
II	10	Periodicity in properties: Atomic and ionic radii,		
		Ionization enthalpy - Electron affinity (electron gain	3	
		enthalpy) - Electronegativity, valency, Oxidation		
		number (Representative element), metallic and non-		
		metallic character, inert pair effect,		
		Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept -	2	
		Molar volume - Oxidation and reduction – Equivalent		
		mass.		
	12	Methods of expressing concentration: Molality,	2	
		molarity, normality, ppm, and mole fraction.		
	13	Dilution formula, Theory of volumetric analysis –	3	
		Acid-base, redox, and complexometric titrations :		
III	14	acid-base, redox, and complexometric indicators.	2	
		Double burette method of titration: Principle and		
	15	advantages.	2	
	15	principles in the separation of cations in quantative	2	
	16	analysis	2	
	10	common for effect and solubility product and its	2	
	17	Microanalysis and its advantages Accuracy &	2	
	17	Precision (mention only).	2	
		Nano Chemistry	10	20
			-	-
	18	Introduction, Definition of nanomaterials and		
		nanotechnology –Classification of nanomaterials	2	
		based on dimension with examples for each 0D, 1D,		
IV		and 2D		
1 4	19	Synthesis of nanomaterials: top-down processes and	2	
		Bottom-up processes		
	20	Carbon nanotubes, Types of Carbon nanotubes –		
		SWCNT and MWCNT, Synthesis of Carbon nanotubes	3	
		- electric arc discharge, laser ablation, and chemical		
		vapor deposition.		

	21	Important properties of carbon nanotubes and	1				
		applications of carbon nanotubes.					
	22	Fullerenes, graphene - (basic concept only, no	2				
		classification is required) Applications of					
		nanomaterials.					
		Basic Inorganic Chemistry Practical:	30				
		Acid-Base titrations and Redox titrations					
		General Instructions					
		For weighing electronic balance must be used. For					
	titrations, double burette titration method should be						
	used. Standard solution must be prepared by the						
		student. Use a safety coat, gloves, shoes and goggles in					
		the laboratory. A minimum of 7 experiments must be					
		done. Out of the seven experiments, one is to be open-					
		ended which can be selected by the teacher					
		Importance of lab safety – Burns, Eye accidents, Cuts,					
		gas poisoning, Electric shocks, Treatment of fires,					
		Precautions and preventive measures.					
		Weighing using electronic balance, Preparation of					
		standard solutions.					
	Ŧ	Neutralization Titrations					
	1	1. Strong acid – strong base.					
		3. Weak acid – strong base					
		bi Weak deld strong buse.					
		Redox Titrations - Permanganometry:					
	П	4. Estimation of oxalic acid.					
		5. Estimation of Fe2+/FeSO4.7H2O/Mohr's salt					
		Paday Titrations Dishromatry					
		6 Estimation of Fear/FeSO4 7H2O/Mohr's salt					
		using internal indicator.					
		7. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt					
		using external indicator.					
		Redox Titrations - Iodimetry and Iodometry:					
		8. Estimation of iodine.					
V		9. Estimation of copper					
		Open-ended experiments - Suggestions					
		Iodometry: Estimation of chromium.					
	III	Determination of acetic acid content in vinegar by					
		titration with NaOH.					
		Determination of alkali content in antacid tablets by					
		titration with HCl.					
		Determination of available chlorine in bleaching					
		powder.					

References

- 1. C. N. R. Rao, Understanding Chemistry, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.
- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. M. A. Shah, Tokeer Ahmad, *Principles of Nanoscience and Nanotechnology*, Narosa Publishing House, New Delhi, 2010.
- 8. T. Pradeep, *A Textbook of Nanoscience and Nanotechnology*, McGrawhill, New Delhi, 2012.
- 9. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 10. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	O2	03	04	05	06							
CO 1	2				2		1				1		
$\frac{1}{CO}$	2				2		1				1		
2	2				2		1				1		
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark
CO5	\checkmark	\checkmark		\checkmark
CO6	\checkmark	\checkmark	\checkmark	