Programme	B. Sc. Mathematics Honours				
Course Code	MAT1MN101				
Course Title	CALCULUS				
Type of Course	Minor				
Semester	I				
Academic Level	100 –199				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4	4	ı	60	
Pre-requisites	Basic Idea of Functions, Limits and Continuity				
Course Summary	This course co	vers fundamental concepts	in calculus: It	begins with	
	introducing the idea of tangent lines, rates of change, and the derivative,				
	illustrating their application in describing motion and finding				
	instantaneous rates of change. Basic rules of differentiation, including the				
	product, quotient, and power rules, as well as techniques for finding				
	higher-order derivatives are discussed. It also covers related rates,				
	differentials, extrema of functions, the mean value theorem, concavity,				
	inflection points, curve sketching, indefinite and definite integrals,				
	integration by substitution, and the geometric interpretation of the				
	definite integral. These sections explore various calculus techniques for				
	analysing functions, determining areas under curves, and solving real-				
	world problem	S.			

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Demonstrate proficiency in finding	Ap	С	Internal
	derivatives using various			Exam/Assignme
	differentiation techniques and apply			nt/ Seminar/
	them to describe motion, rates of			Viva / End Sem
	change, and related rates problems.			Exam
CO2	Analyse functions to determine	An	С	Internal
	extrema, concavity, and inflection			Exam/Assignme
	points using the Mean Value Theorem,			nt/ Seminar/
	First and Second Derivative Tests,			Viva / End Sem
	leading to effective curve sketching.			Exam
CO3	Apply integration techniques to	Ap	С	Internal
	compute areas between curves,			Exam/Assignme
	volumes of solids of revolution, arc			nt/ Seminar/
	lengths, and surface areas, culminating			Viva / End Sem
	in understanding the Fundamental			Exam
	Theorem of Calculus and its			
	applications.			
	1 (D) II 1 . 1(II) A 1 (A)		T 1 . (T)	6 (6)

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Detailed Syllabus:

Text Book		Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (20) 0-534-46579-7.	10) ISBN	N-13: 978-
Module	Unit	Jnit Content		Ext. Marks (70)
I	1 2 3 4 5 6 7 8	Introduction to Differentiation A Quick Review of Functions, Limits, and Continuity (This unit is optional) Section 1.5: Tangent Lines and Rates of Change - An intuitive Look, Defining a Tangent Line, Tangent lines, Secant lines and Rates of Change. Section 2.1: The Derivative - The Derivative, Using the Derivative to Describe the Motion of the Maglev, Differentiation, Finding the Derivative of a Function, Differentiability, Differentiability and Continuity Section 2.2: Basic Rules of Differentiation - Some Basic Rules Section 2.3: The Product and Quotient Rules - The Product and Quotient Rules(Example 6 is optional), Extending the Power Rule, Higher- Order Derivatives Section 2.6: The Chain Rule – Composite Functions, The Chain Rule, Applying The Chain Rule Section 2.7: Implicit Differentiation – Implicit Functions, Implicit Differentiation Section 2.8: Related Rates - Related Rates Problems, Solving Related Rates	14	Min 15
II	9 10 11 12	Applications of Differentiation Section 2.9: Differentials and Linear Approximations - Increments, Differentials, Linear Approximations Section 3.1: Extrema of Functions - Absolute Extrema of Functions, Relative Extrema of Functions, Finding the Extreme Values of a Continuous Function on a Closed Interval Section 3.2: The Mean Value Theorem - Rolle's Theorem, Some Consequences of the Mean Value Theorem, Determining the Number of Zeros of a Function. Section 3.3: Increasing and Decreasing Functions and the First Derivative Test - Increasing and Decreasing Functions, Finding the Relative Extrema of a Function Section 3.4: Concavity and Inflection Points - Concavity, Inflection Points(Example 6 is optional), The Second Derivative Test, The roles of f 'and f" in	12	Min 15
III	14	Determining the Shape of a Graph. Introduction to Integration Section 3.6: Curve Sketching -		

		The Graph of a Function, Guide to Curve Sketching(Up		
		to and including Example 2)		Min 15
	15 Section 4.1: Indefinite Integrals -		10	11222
	Antiderivatives, The indefinite Integral, Basic Rules of			
	Integration.			
	16 Section 4.2: Integration by Substitution -			
		How the method of Substitution Works, The Technique		
		of Integration by Substitution (Example 8 is optional)		
	17	Section 4.3: Area -		
		An Intuitive Look, Sigma Notation, Summation		
		Formulas, Defining the Area of The Region Under the		
		Graph of a Function (Example 9 is optional)		
	18	Section 4.4: The Definite Integral -		
		Definition of the Definite Integral (Examples 2,3, and 4		
		are optional), Geometric Interpretation of the Definite		
		Integral, The Definite Integral and Displacement,		
		Properties of the Definite Integral.		
	7	The Main Theorem and Applications of Integration		
	19	Section 4.5: The Fundamental Theorem of Calculus -		
		The Mean Value Theorem for Definite Integrals, The		
		Fundamental Theorem of Calculus - Part 1, Fundamental		
		Theorem of Calculus - Part 2, Evaluating Definite		
		Integrals using Substitution, Definite Integrals of Odd		
		and Even Functions	12	Min 15
	20	Section 5.1: Areas Between Curves -		
IV		A Real- Life Interpretation, The Area Between Two		
		Curves, Integrating with Respect to <i>y</i>		
	21	Section 5.2: Volumes: Disks, Washers, and Cross		
		Sections -		
		Solids of Revolution, The Disk Method, The Method of		
		Cross Sections.		
	22	Section 5.4: Arc Length and Areas of Surfaces of		
		Revolution - Definition of Arc Length, Length of a		
		Smooth Curve, Surfaces of Revolution		
		Open Ended	12	
	1	Limits Involving Infinity; Asymptotes		
	2	Derivatives of Trigonometric Functions		
	3	The General Power Rule and using the Chain Rule		
	4	Volumes Using Cylindrical Shells		
V	5	Work, Moments and Centre of Mass		
	6	Taylor & Maclaurin's Series		
	7	Approximation by Taylor Series		
	8	Transcendental Functions		
	9	Improper Integrals		
	10	Numerical Integration		

References:

- 1. Calculus & Analytic Geometry, 9th Edition, George B. Thomas & Ross L. Finney, Pearson Publications.
- 2. Thomas' Calculus, $14^{\rm th}$ Edition, Maurice D. Weir, Christopher Heil, & Joel Hass, Pearson Publications.

- 3. Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis, Wiley India.
- 4. Advanced Engineering Mathematics, 10th Ed, Erwin Kreyszig, John Wiley & Sons.
- 5. Calculus, 4th Edition, Robert T Smith and Roland B Minton, McGraw-Hill Companies
- 6. Calculus, 9th Edition, Soo T Tan, Brooks/Cole Pub Co.
- 7. Calculus, Vol 1, Tom M. Apostol, John Wiley & Sons.
- 8. Michael Van Biezen Calculus Lectures: https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	1
CO 2	2	1	3	1	3	1	3	1	2
CO 3	3	2	3	1	3	1	3	1	2

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	√
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	√	✓